BetaCage: A multi-wire proportional counter beta screening facility

T. Shutt, E. Dahl

Princeton University

R. Schnee

Case Western Reserve University

R. Gaitskell, L. DeViveiros

Also:

S. Elliot, T. Bowles at LANL

+ others?

A new type of beta screening facility

- Idea driven by low energy beta contamination limiting CDMS, EDELWEISS
- Ge detectors insensitive to low energy betas
 - Metal cans, dead layer.
- Complement to chemical measurements
 - Short lived isotopes can't be detected chemically
- Major drawback:
 - Poor spectral information. But perhaps not so bad for betas.
- Beta background goals:
 - CDMSII: 10⁻⁴ cnts/keV/cm²/day
 - 1 ton: 10⁻⁶ cnts/keV/cm²/day

MWPC screening facility

- Deploy minimum material needed to stop β in question.
 - $-150 \text{ keV e}^{-} \approx 10 \text{ cm Ne } (1 \text{ atm})$
 - Gas is best method to achieve this low mass
 - Semiconductor capacitance to high noise to high.
 - Scintillator. Dead layer on surface, ¹⁴C
- Minimum surface detector
 - Only achievable with gas detector.
 - $-20 \mu \text{m} \text{ Ø}$, 1/2 cm spacing -0.4% coverage

Design concept

Design

- 1 atm Ne
 - Or Xe, possibly higher pressure.
- Alternating, crossed sense and anode wires.
 - Fiducial length \approx 4 cm
 - -z guard region ≈ 4 cm
 - xy readout.
 - Extent of guard region to be determined.
 - Benefit of small scale x-y readout resolution?
- 20 μ m Ø wires, Voltages \approx 2 k V
 - Drift field depends on wire and grid separation (few hundred V/cm)

Gas choice

- Xe, Ne, He radiopure gasses
 - Ne:
 - Best for low energy betas: 10 cm contains 150 keV
 - Inexpensive allows flushing, atm pressure operation
 - Xe:
 - Good for high energies, alphas.
 - May require outer chamber to be evacuated
- Quench gas: ¹⁴C problem
 - Not a problem if maintain $< 10^{-16}$ g/g. (CTFI: $2x10^{-18}$ also see T. Litherland talk)
 - Could possibly use non-organic quench gas, e.g.,
 SF₆.

Gain in pure Xe, 20 μ m Ø wires

Backgrounds

- Dominant: gammas
 - Assume 1 cnt/kg/keV/day with good shield
 - 5 mm trigger region.
 - Rate: 3x10⁻⁵ cnts/kg/keV/day at low energy.
- Other:
 - ¹⁴C in quench gas
 - 5% methane, 2x10⁻¹⁸ g/g C14/C12
 - $1x10^{-7}$ /cm²/keV/day
 - 85Kr (in Xe)
 - Best commercial Xe \sim 5 ppb Kr (\approx 0.5 dru)
 - $1x10^{-6}$ /cm²/keV/day
 - Wires.
 - Bulk: negligible 10⁻⁸ /cm²/keV/day
 - Surface: at 20 μ m Ø, 0.5 cm spacing -> 250 smaller than sample
 - May have to clean wires
 - Rate from gammas in sample.
 - Need MC calc. Thin sample best.
 - Equal mass to gas $\approx 100 \ \mu \text{m}$ in Ge

Gamma background

Backgrounds summary

Source	Rate
	(cnts/keV/cm²/day)
Photon, nominal 1 dru (in Ge) environment	$3x10^{-5}$
Kr rate in full volume. Assume 20 ppb.	$4x10^{-6}$
5% methane quench gas (assume 2x10 ⁻¹⁸	1×10^{-7}
C^{14}/C^{12}). Rate in full volume.	
Wires: Internal beta rate < 100 keV. U, Th	≈10 ⁻⁸
contamination is typical for dirty metals, e.g.	
SS.	
Wires: Rate from gammas in full volume.	≈ 10 ⁻¹³
30 resistors: Rate from gammas in full	≈10 ⁻⁶
volume. Assume \approx ppm U, Th, typical of	
ceramics	

Sensitivity (assuming background subtraction)

Other uses

- Alpha counting.
 - Probably very low background, but has not been studied
- 85Kr: 20 ppb at 4x10⁻⁶ /cm²/keV/day
- ¹⁴C: Can fill counter with CO₂.
 - 10⁻¹⁶ or lower seems possible
 - Need $\sim 10^1$ g samples, week-month counting times.
 - Q: how competitive is this?